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Abstract

In this short note we analyze the performance of nonlinear, shock-capturing schemes in wavenumber space. For this
purpose we propose a new representation for the approximate dispersion relation which accounts to leading order for non-
linear effects. Several examples are presented, which confirm that the present theory yields an improved qualitative repre-
sentation of the true solution behavior compared to conventional representations. The theory can provide useful guidance
for the choice of the most cost-effective schemes for specific applications, and may constitute a basis for the development of
optimized ones.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of flow fields that include both shock waves and rich flow features (acoustic
waves, turbulence) requires the use of high-fidelity numerical schemes that must be capable at the same time
to handle flow discontinuities and accurately resolve a broad range of length scales, often orders of magnitude
apart. It is well known [15] that the order of the truncation error of a numerical scheme only provides infor-
mation on the asymptotic convergence rate to the exact solution, but it does not convey valuable informations
on the actual error on a finite computational grid; rather, wave-propagation (spectral) properties of a differ-
ence scheme provide informations on the evolution of all Fourier modes supported on the grid. Linear, central
difference approximations are ideal candidates to achieve quasi-spectral behavior in wavenumber space [4].
However, when the flow field includes shock waves whose location is not known in advance, such as for exam-
ple supersonic jets in off-project conditions (see, e.g. Ref. [2]), the use of shock-capturing schemes becomes
(almost) mandatory [4]. Shock-capturing schemes of formal order of accuracy higher than one are always non-
linear [6], i.e. they have a nonlinear behavior even when applied to linear equations, and most often incorpo-
rate some form of upwind-biasing. The nonlinear mechanisms in shock-capturing schemes may be represented
either by a switch, such as for TVD schemes based on the use of flux (or slope) limiters [10], or on the adaptive
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or solution-biased choice of the stencil for the evaluation of the numerical flux, such as for ENO [5] and
WENO [7] schemes. It is generally acknowledged that such nonlinear mechanisms have the main effect of acti-
vating (or enhancing) numerical dissipation (more or less) locally around discontinuities so as to prevent (or at
least limit) the onset of Gibbs oscillations. Most often, modern shock capturing schemes have linear counter-
parts; for example, weighted essentially non-oscillatory (WENO) schemes may be turned into linear upwind
schemes by disabling the nonlinear weights. The linear counterparts of shock-capturing schemes have occa-
sionally been used in the literature (see, e.g. Ref. [16]) in order to gauge their performance in wavenumber
space upon inspection of the approximate dispersion relation [8], i.e. the relation between the modified wave-
number and the reduced wavenumber, which can be consistently defined only for linear schemes. However,
even though seldom stated explicitly , numerical tests show that the genuinely nonlinear mechanisms under-
lying shock-capturing schemes have a dramatic impact upon the computed solution, and their actual behavior
may be very different from the one predicted on purely linear grounds.

In the present paper we analyze the wave propagation properties of shock-capturing schemes for smooth
solutions, by attempting to define a suitable approximate dispersion relation (ADR). We point out that the
issue of the behavior of shock-capturing schemes for shocked solutions is at least equally important, but is
outside the scope of the present note; for a recent discussion on the topic the reader may consult Ref. [13]
and reference therein.

The objective of the study is two-fold: (i) quantify the (leading order) effect of nonlinear mechanisms on the
solution behavior in wavenumber space; and (ii) identify an error metric to be used as a basis of comparison
for shock-capturing schemes designed for aeroacoustics applications. For this purpose, in Section 2 we define
an ADR for nonlinear schemes; in Section 3 we illustrate the behavior of several low- and high-order shock-
capturing schemes according to the new metric; and finally in Section 4 we compare the computational effi-
ciency of those schemes.

2. General theory

For the sake of the analysis, let us consider the one-dimensional propagation of small disturbances in an
unbounded domain, governed by the linear advection equation, with monochromatic sinusoidal initial condi-
tions of wavelength k (and wavenumber w = 2p/k),
ou
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ou
ox
¼ 0; �1 < x < þ1; uðx; 0Þ ¼ û0eiwx; ð1Þ
and assume a > 0. Let us consider a semi-discrete approximation of Eq. (1) on a grid with uniform spacing h
and nodes xj = jh,
dvj

dt
þ av0j ¼ 0; vjð0Þ ¼ û0eiju; ð2Þ
where vj(t) � u(xj,t) and u = wh is the so-called reduced wavenumber [8]. If one assumes an explicit linear fi-
nite-difference approximation for the spatial derivative of v
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Eq. (2) has the following exact solution [15]:
vjðtÞ ¼ v̂ðtÞeiju; ð4Þ

where the complex amplitude of the solution at time t is given by
v̂ðtÞ ¼ e�iðat=hÞUðuÞû0; ð5Þ

and U(u) is the modified wavenumber [8] associated with the space discretization (3),
UðuÞ ¼ 1
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Spectral schemes have U(u) = u, and therefore the distance jU(u) � uj/u can be usefully interpreted as a mea-
sure of the relative error associated with the finite-difference discretization.

Shock-capturing schemes typically use conservative approximations for the spatial derivative, so as to
ensure convergence to weak solutions [9], based on the definition of a numerical flux v̂jþ1=2 such that
v0j ¼
1

h
ðv̂jþ1=2 � v̂j�1=2Þ; ð7Þ
where
v̂jþ1=2 ¼ v̂ðvj�qþ1; . . . ; vjþrÞ; ð8Þ
note that v̂ is, in general, a nonlinear function of its arguments, and therefore no analytical formula can be
obtained for the ADR in this case.

However, even for nonlinear schemes one can (rather artificially) define an ADR by considering sinusoi-
dal initial conditions with assigned reduced wavenumber vjð0Þ ¼ v̂0eiju, and time-advancing the solution up
to a very small time (say s), in order to rule out any error associated with time integration. The Fourier
transform of the computed solution at time s yields the complex amplitude of the mode associated with
the reduced wavenumber u, labeled here as v̂ðu; sÞ, and therefore can exploit relation (5) to define a mod-
ified wavenumber
UðuÞ ¼ � 1

ir
log

v̂ðu; sÞ
v̂0

� �
; ð9Þ
where r = as/h� 1. On a finite grid of length L and nodes j = 0, . . . ,N, h = L/N, the supported Fourier
modes have wavelenghts kn = L/n, n = 0, . . . ,N/2, and the corresponding reduced wavenumbers are
un = 2pn/N, and 0 6 un 6 p. The above procedure is then repeated to define a modified wavenumber for
all supported wavenumbers in practice, the DFT of the solution at un is evaluated according to
v̂ðun; sÞ ¼
1

N

XN�1

j¼0

vjðsÞe�ijun ; ð10Þ
and then relation (9) is exploited to define a modified wavenumber for all supported modes
UðunÞ ¼ �
1

ir
log

v̂ðun; sÞ
v̂0ðunÞ

� �
; n ¼ 0; . . . ;N=2: ð11Þ
Following this procedure one is able to construct an ADR that accounts to leading order for the non-
linear effects embodied in shock-capturing schemes. Several caveats are in order here. In first place, one
should recognize that the solution spectra at time s obtained by means of shock-capturing schemes contain
a whole range of wavenumbers rather than the primary one only, as would be the case for linear schemes;
at later times those secondary (spurious) modes interact with each other and with the primary one, thus
affecting its evolution. In second place, in general several Fourier modes of O(1) amplitude are present
at the same time, and, unlike the linear case, their evolution cannot be analyzed separately. These aspects
place a stringent bound on the range of applicability of the present (quasi-linear) theory, and will be dis-
cussed in greater detail in the next section. Finally, one might observe that the computed ADR in principle
depends upon the choice of the initial complex amplitude of the Fourier modes (v̂0ðunÞ); we have found
that this is not the case, and for all schemes considered here there is no significant influence of the choice
of v̂0ðunÞ on the reported ADR.

3. ADR of common shock-capturing schemes

For illustrative purposes in the present study we have considered a limited number of shock-capturing
schemes, including: (i) second-order TVD schemes of the type developed by Osher and Chakravarthy [10],
with the minmod (MM), superbee (SB) and Van Leer (VL) flux limiters (see, e.g. Ref. [6] for a comprehensive
discussion on limiters); (ii) the third-order TVDM (total variation diminishing in the means) compact scheme
of Cockburn and Shu [3] with minmod limiter (CS3); and (iii) schemes of the WENO class [7], with formal
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order of accuracy of three (WENO3), five (WENO5) and seven (WENO7). For an extensive review of the
properties of WENO schemes, as well as for a compilation of weights and smoothness indicators, the reader
is referred to the work of Balsara and Shu [1]. We point out that, even though results are shown only for a
limited number of schemes, the analysis can be applied in principle to any scheme.

The main results are reported in Fig. 1, in terms of the real and the imaginary part of the modified
wavenumber; we recall that (see Eq. (5)), the real part of U is associated with the approximate phase speed,
i.e. with the dispersion properties of the discretization scheme, while the imaginary part of U is related to
its ‘numerical dissipation’. For comparison purposes, in Fig. 2 we also report the ADR of the linear coun-
terparts of the schemes listed above. For this purpose we recall that second-order TVD schemes may be
thought of as a blend of first-order upwind (UW1) and second-order central (C2) differencing, and that
disabling the nonlinear weights of WENO schemes one is left with the linear upwind schemes of the cor-
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Fig. 1. Approximate dispersion relation for various shock-capturing schemes.
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Fig. 2. Approximate dispersion relation for various linear finite-difference schemes.
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responding order (UW3, UW5, UW7). The linear version of Cockburn and Shu’s scheme is a third-order
compact upwind scheme that we have labeled here as CS3L; for a discussion on the ADR of compact
upwind schemes see, e.g. Ref. [11].

The results quantitatively unveil some interesting facts, most of which are already (loosely though)
acknowledged. The effect of limiters on second-order TVD schemes is beneficial for performance in wavenum-
ber space in that they have better dispersion properties than C2 scheme, and less numerical dissipation than
UW1, whereas limiting has a minor effect on the performance of the CS3 scheme. The analysis also indicates
that the TVD-SB scheme has a slightly unstable behavior at low wavenumbers, where Im(U) > 0 (though not
clearly visible in the figure); this is associated with the well known ‘squaring’ effect caused by the superbee lim-
iter, and is compensated by its nonlinear stability properties. With regard to the behavior of WENO schemes,
they exhibit similar dispersion performances but less numerical dissipation with respect to low-order ones, and
propagate marginally resolved waves (i.e. for u � p) at negative phase speed. The spectral properties (both
dispersion and dissipation) of WENO schemes are dramatically deteriorated upon activation of the nonlinear
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weigths, and linear analysis brings little (if any) information on the actual solution behavior. In order to
investigate this point more clearly, we have analyzed the evolution of the amplitude of (initially) isolated Fou-
rier modes corresponding to u = p/8, p/4 and p/2. The results of simulations of the linear advection equation
performed with the WENO5 scheme are reported in Fig. 3; in the same figure we also report the theoretically
predicted time evolution (as from Eq. (5))
Fig. 3.
(UW5
jv̂ðu; tÞj ¼ jv̂0ðuÞjeðat=hÞIm½UðuÞ�; ð12Þ

where the modified wavenumber U is either extracted from the simulation according to Eq. (11) or predicted
on linear grounds according to Eq. (6) for UW5, which is the linear version of WENO5. The figure clearly
indicates that linear analysis predicts a much slower decay of the Fourier modes, while the quasi-linear anal-
ysis described in Section 2 provides quantitatively correct prediction for the amplitude of the modes up to a
time, which is shorter for marginally resolved waves, when higher order effects related to the onset of spurious
modes become important. For the same scheme we have also computed the solution starting from initial con-
ditions containing a broad range of wavenumbers,
vjð0Þ ¼
XN=2

m¼1

A0
mðumÞeihm eijum ; ð13Þ
where the initial amplitude of the modes are distributed according to
A0
mðumÞ ¼ e�ðum=ðp=8ÞÞ2 ð14Þ
and hm are random phases. The computed amplitude spectra at time t = 8 are shown in Fig. 4 together with
the predictions obtained from the quasi-linear ADR for WENO5 and the linear ADR for UW5. Even though
in this case nonlinear interaction between O(1) modes are certainly not negligible, the figure shows rather good
agreement at low wavenumbers with the quasi-linear ADR. At higher wavenumbers a spectrum ‘wake’ con-
sisting of spurious modes arises, which is not accounted for in the present theory.

The same qualitative behavior shown here for WENO5 has been observed for all the schemes we have con-
sidered. The overall indication is that the quasi-linear ADR here proposed can be used to get a more precise
(even though incomplete) idea on the qualitative behavior of the solution of wave propagation problems pro-
vided by shock-capturing schemes compared to the commonly used linear ADR.
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4. Performance analysis

The next step is exploiting the new ADR representation to obtain an improved numerical error metric to
compare the performance of different schemes, and potentially to design optimized ones. The analysis of the
error of linear finite-difference schemes for spatial discretization has been the subject of previous studies by
Colonius and Lele [4] and by the present author [12]. The main result of those studies is that, for wave prop-
agation problems involving a range of wavenumbers 0 6 w 6 �w, the maximum relative error (defined as the
distance in the L2 norm from the exact solution) is given by
Table
Estima
UW1)

UW1

1

e0ð�uÞ ¼
1

�u
max

06u6�u
jUðuÞ � uj; ð15Þ
where �u ¼ �wh, and is therefore entirely dependent upon the ADR of the scheme under consideration. In addi-
tion, assuming that time integration is performed by means of an explicit Runge–Kutta scheme at fixed value
of the Courant number, the incurred computational cost is
C � m
�r�unDþ1

; ð16Þ
where nD is the number of spatial dimensions and m is a measure of the CPU time per grid point per time step
required by the scheme. The specific values of m used in the present analysis (reported in Table 1) have been
obtained by measuring the CPU time required by the various schemes for the solution of Burgers equation,
and include the time for performing Lax–Friedrichs flux splitting. Such values are meant only for indicative
purposes, as the actual figures sensitively depend upon the specific implementation and computer architecture.
The idea is then to exploit the results of linear analysis to evaluate the performance of shock-capturing
schemes for wave propagation problems assuming that they can be characterized in terms of their quasi-linear
1
te of CPU time per grid point per time step for several shock-capturing schemes (cost is normalized by the CPU time needed for

TVD-MM TVD-SB TVD-VL CS3 WENO3 WENO5 WENO7

1.786 1.942 1.775 3.220 2.682 5.607 7.613
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Fig. 5. Cost vs. error level plots (in one space dimension) for several shock-capturing schemes.
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ADR. In Fig. 5 we report the cost vs. error plot thus obtained for the shock-capturing schemes considered in
the present paper for one-dimensional problems (i.e. nD = 1). The figure seems to indicate that high-order
shock-capturing schemes of the WENO class become more cost-effective when relatively strict error tolerances
are placed (i.e. for error levels e0 6 10�2); when coarser representations are sought for, classical second-order
TVD scheme seem to be best candidates. Taking this analysis literally, one might think of constructing shock-
capturing schemes optimized for specific error levels (as done in Ref. [12] for linear schemes), trying to modify
their quasi-linear ADR. This could be done, for example, acting on the WENO weights or smoothness
evaluators.

We again remark that the overall solution error is affected by the generation of spurious modes and by non-
linear mode interactions; these features are not accounted for in the present analysis, and actual error levels
can be even one order of magnitude larger than those predicted from Eq. (15). The simplified analysis, how-
ever, has at least two merits: (i) it provides a lower bound for the overall error; (ii) it provides a basis for the
comparison of performance of nonlinear schemes other than case-by-case, as usually done in the literature
(see, e.g. Ref. [14]).

5. Concluding remarks

In this note we have defined an approximate dispersion relation for nonlinear, shock-capturing schemes.
Despite its limitations, the theory is proven to be more accurate in predicting the qualitative solution for wave
propagation problems than conventional linear representations. Computed results indicate that nonlinear
mechanisms generally degrade the solution behavior of shock-capturing schemes compared to their linear
counterparts, to an extent that is not predictable on purely linear grounds. One of the applications of the pres-
ent theory is the definition of a new error metric for shock-capturing schemes which (though only approxi-
mate) may provide some general guidance for the selection of the most cost-effective scheme under specific
restrictions of the solution error, as well as for the development of optimized schemes.
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